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A revised expression is derived for the mean absorption coefficient
of a hydrogen-type plasma, which in the limit of complete jonization
becomes the standard formula for free-free absorption.

Consider the relation between the electron temperature T and the
ion temperature Tj in an optically thin plasma. Radiative losses dis-
turb the equilibrium between T and Tj; marked deviation of T/Tj
from unity for constant T; occurs for T > 10° °K for air and heavier
gases.

In a radiation-cooled plasma, the difference of T/Ti from unity
for the same T is less by about an order of magnitudethan in the steady-
state case, Exact data have been obtained for the dependence of T on
T; for an air plasma.

§1. General. Radiation losses cause deviation from thermodynamic
equilibrium in an optically thin medium, which itself affects the ra-
diative properiies of the medium. This deviation in a small volume of
given density has one of the following effects: 1) the populations u; of
the energy levels ! cannot at all be described via equilibrium relations,
or 2) these relations apply only to particular groups of u; and not to all
groups. In particular, the populations of the excited electron states
(bound or free) are reduced either in an essentially nonequilibrium
fashion or by reduction of T relative to Ty. The reduction in u; in a
radiating plasma with a given T has been discussed in detail [1,2]. It
has been shown for a thin hydrogen plasma [1] that y = u;/u; (inwhich
u is the equilibriuvm value of 1y for T) for free electrons is much less
than one when the density Ne of the free electrons is small. For in-
stance, y =2 - 107 at T =5000° K (low degree of ionization) for a
hydrogen plasma at normal pressure, while y =0.84 at T =15000° K,
The N, giving

y=1 (1.1)

(local thermodynamic equilibrium in the electron states) is much high-
er for a gas with multiple ionization than for one with single ioniza-
tion, because the cross-sections for collisional excitation and ioniza~
tion by electrons decrease roughly as (z + 1)™ (z =0 for a neutral
atom, z = 1 for a singly ionized atom, etc.) [2], while the probability
of spontaneous emission increases as (z + 1)4 [a].

The free electrons in a transparent plasma are [2] in equilibrium
with the populations of levels of principal quantum number n in hydro-
gen-type ions if
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in which I is the ionization potential of a hydrogen-type ion with
charge z — 1.

Relation (1.1) is almost always obeyed for large n, but this is a
fairly stringent condition for the lower excited levels. For example,
(1.2) applies only for n = 4 for completely ionized air of normal den-
sity. However, there is considerable interest in a plasma optically
thin relative to free-free and free-bound radiation but opaque for reso-
nant radiation from the lower excited levels [3,4], which do not satis-
fy (1.1) (for example, a low-temperature plasma is usually opaque to
the Lyman series). If the emission from the first excited level is sub-
stantially reabsorbed, relation (1.1) is [2] obeyed in any case if
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in which E; and E; are the energies of the levels withn =2 and n = 1.
If the plasma is also opaque for certain other resonant quanta, an in-
equality of the (1.3) type becomes less stringent [2]. Experiments with
sparks [5] and shock waves [6] show that there is a zone where (1.1) is
obeyed in a hot gas wransparent for free-free and free-bound radiations.

T may not equal Tj although (1.1) is obeyed, and this aspect is
examined quantitatively here. We also examine the emissivity of a
hot spatially homogeneous gas and the relation of T to Tj in a steady-
state plasma (given Tj) and in a cooling plasma that satisfies (1.1) and
is transparent for free-bound and free-free radiations.” It will be shown
that, for air or a heavier gas,

T —T LT (1.4)

is not obeyed for T > 10° °K.

§2. Steady state. Consider the relation of T to Tj for a radiating
plasma in which Tj is kept constant in some way. T as a function of
Tj is determined from the equality of the radiation flux to the energy
received by the electrons from collisions with heavy particles, which
is

SNkz(T; —T)/ 21 (v=252 AT*/22 NA), (2.1)

in which N is the density of heavy particles, 7 is the electron-ion re-
laxation time, A is the atomic weight of the ion and A is the Cou-
lomb logarithm. If there is a mixture of ions, z means the mean ion
charge, which equals the number of free electrons per heavy particle.
Expression (2.1) has been derived via Landau's relaxation equation,
on the assumption that the relaxation does not cause the free-electron
velocity to. deviate from a Maxwellian distribution, which is justified,
since the radiative cooling and collisional heating are slow relative
to the establishment of the Maxwellian velocity distribution for elec-
trons, which has a characteristic time 7¢ = z7m/y, in which m and p
are the masses of an electron and an ion. There would be an appreci-
able deviation from a Maxwellian distribution for the electrons of Tj >
> T, but this would require extremely high temperatures, whereas
Tj — TZ Tin all cases envisaged here,
Che radiation emitted by unit volume of gas is [3]

4Ty (T) (2.2)

in which » is the mean absorption coefficient and o is Stefan’s con-
stant.

The precise relation between T and Tj is dependent on the nature
of the gas and will be considered for an air plasma after we have con-
sidered more approximately the relations for all gases.

We use the following approximate expression [3] for the absorption
coefficient:™
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in which I is the ionization potential for ions with a mean charge z —
- 1.

We first need some revision of (2.3), which will be seen to be not
very important for I;/kT > 1, but which is necessary for the correct
description of % for a completely ionized plasma for I;/kT < 1. Of
course, in place of (2.2) and (2.3) we could use the data of [7], which

*Obedience to (1.1) for examination of the relation between T and
Tj is required only insofar as it is necessary in order for Ne to be de-
scribed by Saha's equation and for the main radiations from the plasma
to be free-free and free-bound.

* The formula from [3] is here given in the revised form obtained
by replacing the m of [3] by z — 1. We then use the method of 3],
taking into account the fact that the maximum in Ny, exp (~Im/kT)
does not coincide with the maximum Ny and lies at m =z — 1, which
gives (2.3) for z > 1. This feature is important for the substitution of
the correct value of 1, into (2.3).
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were derived by direct calculation of the radiation losses of a hydro-
gen-type plasma via bremsstrahlung and recombination radiation.
However, it is of interest, at least as regards method, to find the ra-
diation losses of (2.2) by calculation of u.

§3. Mean absorption coefficient of a hydrogen-type plasma, For-
mula (2.3) is obtained by frequency averaging of the spectral coeffi-
cient ,, for a hydrogen-type ion, with subsequent transformation by
Saha's formula for an ion with the average charge [3]. The contibu-
tion from the bremsstrahlung absorption to . is taken into account only
by the Kramers-Unsold relation [3, 8]
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which applies for quanta with hv « 1,. Moreover, (8.1) is applied
throughout the range hv < I in deriving (2.3).

To convert correctly to wy, for a completely ionized plasma we
must allow for all free-free transitions and not use (3.1) at frequencies
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that do not obey hv <« 1,. The spectral coefficient for bound-free and
free-free absorption is [3]
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Formula (3.1) is derived from (3.2) by replacing the sum with re-
spect to n by an integral. The contribution from n small must be taken
into account separately in that approach. However, it is simpler to
calculate % by not using (3.1) at all and merely integrating (3.2) with
respect to frequency {7] before summation with respect to n. Integra-
tion of (3.2) with respect to frequency (with respect tox withthe weight-
ing factor [3] 15 xse'x/ﬂ4) and summation over all types of ions gives
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which differs from the analogous expression in [3] by the factor 2/3 in
front of the sum and by the additional 1/2 term in the parentheses. We
get the following after combination of (3.3) with Saha’s equation:

g.
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and with g;/gj-; & 1/2 for the ratio of the statistical sums for hydrogen-
type ions, and then averaging the sum with respect to i,

%= 6.2 - 10724 N228T 2 (2 2,8 - 1) . (8.4)

This revised formula for » is multiplied by 4 oT 1o give the cor-
responding expression in [7] if the latter is averaged with respect to
ion charge. This result is entirely natural in view of Kirchoff's law and
because the emittance in [7] was calculated on the basis of the same
hydrogen-type approximation.
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$4, Relation of T to Tj in a steady-state plasma. We equate (2.1)
and (2.2), and use (3.4) with ¢ and » to get

It follows from (4.1) that, for hydrogen, 8 ~ 1 only for T = 10%°K
(A =~ 10 for a hydrogen plasma at such T); but the T for other elements
are much less because A » 1, I;/KT > 1, and A is smaller. For in-
stance, 8 ~ 1 for argon of normal density for T of 5 - 10° w0 10° °K
(Iz/KT = 10, A = 1). These results are obtained via the approximate
formula (3. 4), whereas (1,4) maybe violated at temperatures substan~
tially less than this, because (3.4) for a hydrogen-type plasma gives %
as somewhat less than the more accurate formula (3.8), since in going
from (3.3)to (3.4)no allowance is made in Saha's formula for the contribu-
tion of excited electronic levels to the electronic statistical sum for the ion.

The following are results for © as a function of T for an air plasma
of normal density, together with z and A, which have been calculated
via data [9] for z and w for air, the results for % in [9] being from the
integral Kramers-Unsold formula [8], which differs only slightly from
(3.8) for L;/kT > 1:
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2.0 1.0 0.8 0.65 0.30 0.30 0.20 0.16 0.40 .08
7.2 6.8 6.2 5.6 5.2 5.0 4.5 3.9 3.1 2.4
2.6 1.7 1.7 1.6 1.5 0.8 0.53 0.64 0.59 1.0
103 1.9.1072 0.16 0.32 0.87 2.7 12 26 28 45 54
8 . 0.62  0.41 0.42 0.61 0-82 0.67 0.53 0.27 0.11 0.06

This shows that the difference between T and Tj becomes appre-
ciable for T = 10° °K and that 8 = 0.5 for T = 2 - 30° "K, with little
change when 1 increases up to 2 - 10° °K. Equation (4.1) describes
closely the subsequent increase in € with T. The dependence of 6 on
the gas density has been included in A. The difference between T and
Ti increases with the density on account of the fall in A.

§5, Cooling plasma. The time dependence of T and Tj here is
found by solving a system of two ordinary differential equations, but
an approximate solution of good accuracy can be obtained in another
way, because the specific heat of the electron gas (which includes the
specific heat of ionization) is much greater than the specific heat of
the gas of heavy particles, so the electron gas cools faiily slowly, and
T; can follow T. As a first approximation we put dT/dt = dTj/dt toget

ATy / dt = hoTi | C,, | 5.1)

in which t is time and Cy is the equilibrium value of the specific heat
at constant volume for a plasma of temperature T.
We substitute (5.1) into the relaxation equation for Iy,

AT/ dt = 2 (T — T/ T,

1o get Vi

0 =40T%t/ (z0,) . (5.2)

Comparison of (6.2) with (4.1) shows that € for a cooling plasma is
less than that for the same T in the steady state by a factor 2C,/3Nk.
This ratio is z + 1 for a completely ionized plasma, while for incom-
plete ionization it is greater than z + 1 on account of the contributions
1o Cy, from the specific heat of ionization and the excitation of the
electronic levels of the bound states.

If T=Tj="T, initially, the condition of (5.2) is reached in a time
At, during which the plasma cools to

T =T — 4oTogut/ (zC,), T, =T

It follows from (5.1) and (5.2) that At = 7/2.

The following are values for 2Cy/3Nk calculated via [9] and also
6 for a cooling air plasma of normal density for the same T as for the
steady state:

2 10 0.8 0.65 0.5 0.3 0.2 ¢.96 0.1 0.084
7.4 21 28 24 11 8.1 14 17 13 14
0,087 0.02 0.015 0.025 0.074 0.083 0.038 0.016 0.007 0.004
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This shows that © is much less than in the corresponding steady
states and does not exceed 9% for all T < 2 - 108 °K,
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